
Can Supervised Fine-Tuning Teach Small Language
Models to Match Larger Models on Algorithmic

Reasoning?

Xristopher Aliferis
Department of Electrical and Computer Engineering

Western University
London, Ontario
xaliferi@uwo.ca

Carmel Kurland
Department of Electrical and Computer Engineering

Western University
London, Ontario

carmel.kurland@uwo.ca

Christopher Lam
Department of Electrical and Computer Engineering

Western University
London, Ontario
clam433@uwo.ca

Devraj Nagpal
Department of Electrical and Computer Engineering

Western University
London, Ontario
dnagpal2@uwo.ca

Abstract—Scaling up large language models (LLMs) yields
strong zero-shot performance on many language and reasoning
tasks, but it remains unclear how far much smaller models can
be pushed with supervised fine-tuning alone. We ask whether a
1.5B-parameter model can be trained to match or exceed the
multi-step reasoning performance of a 72B-parameter model on
structured algorithmic problems as the prediction horizon grows.
We construct four synthetic games with discrete state spaces
and known optimal policies (Fibonacci sequence prediction,
Towers of Hanoi, sliding puzzle, and N-Queens) and cast them
into a unified next-K-step prediction interface. For each game
we generate stratified train and test splits and evaluate both
generic sequence metrics and task-specific structural metrics that
capture recurrence consistency, move legality, board dynamics,
and constraint satisfaction. Supervised fine-tuning substantially
improves the small model on all tasks and, on sliding puzzle and
N-Queens, allows it to match or slightly surpass the larger model
in exact-match accuracy and structural consistency. However,
the larger model retains a clear advantage on tasks that re-
quire precise long-range recurrence tracking or deeply recursive
optimal strategies, indicating that fine-tuned small models can
learn meaningful reasoning patterns but do not fully eliminate
the benefits of scale.

Index Terms—large language models, supervised fine-tuning,
multi-step reasoning, algorithmic games, sequence prediction

I. INTRODUCTION

Large language models (LLMs) have rapidly advanced the
state of the art in natural language processing, with model size
emerging as one of the strongest predictors of downstream
performance. Scaling studies show that increasing parame-
ters, data, and compute yields smooth improvements in loss
and task accuracy across translation, question answering, and
general language understanding [1]–[4]. At the same time,

Code available at: https://github.com/XitoAliferis/CS 3346-Group Project

very large models are expensive to train and deploy, which
motivates a central question for both research and practice:
to what extent can smaller models, when carefully fine-tuned,
recover the reasoning capabilities of much larger systems?

This question is especially important for multi-step rea-
soning tasks. Many recent benchmarks highlight that strong
performance often requires producing sequences of interde-
pendent decisions rather than isolated labels, whether in chain-
of-thought style explanations, program synthesis, or algorith-
mic puzzles [5]–[10]. Large models appear to acquire some
of these behaviours implicitly through pre-training and scale,
and some reasoning capabilities emerge only beyond particular
parameter thresholds [11]. However, it is less clear whether
much smaller models can learn comparable behaviours when
they are given explicit supervised trajectories rather than
relying on in-context learning alone [12].

In this work we study this question in a controlled algo-
rithmic setting. Prior work on algorithmic datasets shows that
Transformers can learn approximate algorithms but often fail
to extrapolate reliably to longer sequences or more complex
instances [8], [13]. We compare a small instruction-tuned
model with 1.5 billion parameters to a much larger 72 billion
parameter model on four synthetic games with discrete states,
well-defined optimal policies, and varying forms of structure:
Fibonacci sequence prediction, Towers of Hanoi, an 8-puzzle
sliding game, and the N-Queens problem. Each task is pre-
sented in a unified next-K-step prediction format, where the
model must predict several future moves or sequence elements
given a textual description of the current state, allowing us to
probe how performance changes as the prediction horizon and
effective context length increase.

The small model is evaluated both in a zero-shot configura-



tion and after supervised fine-tuning on synthetic trajectories
generated by exact solvers or search procedures, in line with
work suggesting that training on intermediate reasoning steps
can improve algorithmic generalization [13]. We measure
standard sequence metrics such as exact match accuracy,
position-wise accuracy, and edit similarity, and complement
them with task-specific structural metrics that explicitly test
whether predictions respect the underlying rules of each
game. Examples include recurrence consistency for Fibonacci
sequences, move legality and tower configuration divergence
in Towers of Hanoi, board divergence and legal prefix rates
in the sliding puzzle, and conflict rates in partial N-Queens
placements.

Our results show a mixed but encouraging picture. Across
all games, supervised fine-tuning significantly improves the
small model relative to its baseline, indicating that it does
learn non-trivial multi-step reasoning patterns from supervised
signals alone. On the sliding puzzle and N-Queens tasks, a
fine-tuned 1.5B model trained on a few thousand examples
matches or slightly exceeds the performance of the 72B model
evaluated zero-shot, both in exact match accuracy and in
structural consistency metrics. In contrast, on Fibonacci and
Towers of Hanoi the larger model retains a clear advantage,
particularly when long-range recurrence or deeply recursive
optimal strategies are required. These findings suggest that
while supervised fine-tuning can close much of the gap for
tasks dominated by local constraints and short-to-medium
horizons, model scale still provides a significant benefit for
problems that demand precise long-horizon reasoning.

Our main contributions are:

• We introduce a unified next-K-step framework over four
algorithmic games with exact solvers and structured state
representations, designed to probe multi-step reasoning
under varying horizons.

• We implement a supervised fine-tuning pipeline for a
1.5B-parameter instruction-tuned model using LoRA, and
evaluate it against a 72B-parameter reference model un-
der a shared prompting and decoding protocol.

• We propose and apply a suite of structural metrics (recur-
rence consistency, move legality and tower state, board
dynamics, and queen conflicts) that reveal when small
models genuinely internalise task rules versus merely
matching surface patterns.

The remainder of this paper is organized as follows. Section
II reviews related work on model scaling, reasoning in LLMs,
context length limitations, and supervised fine-tuning. Section
III describes our synthetic games, data generation, prompt-
ing scheme, model configurations, and evaluation protocol.
Section IV presents the experimental results and a cross-task
analysis of learning behaviour. Section V summarizes our con-
clusions and outlines directions for future work, including few-
shot prompting, hyperparameter tuning, and more challenging
long-context variants of the games.

II. BACKGROUND & RELATED WORK

A. Large Language Models, Scaling, and Reasoning

Modern large language models (LLMs) are built on the
Transformer architecture, which replaces recurrence with
multi-head self-attention to model long-range dependencies in
parallel [14]. Earlier sequence models such as LSTMs [15]
and GRUs [16] achieved strong performance on language
tasks but were limited by sequential computation and difficulty
capturing very long contexts. Transformers enabled training
substantially larger models on web-scale corpora and became
the backbone of GPT-style autoregressive LLMs.

Scaling studies show that performance improves predictably
as a power law in model size, data, and compute [1]. GPT-2
demonstrated that a 1.5B-parameter Transformer could per-
form diverse generative tasks in a zero-shot setting without
supervised fine-tuning [17], while GPT-3 (175B parameters)
showed strong zero-, one-, and few-shot capabilities across
translation, QA, and reasoning purely from natural-language
instructions [2]. Follow-up work on in-context learning inter-
prets this phenomenon as a form of implicit Bayesian meta-
learning at inference time, where larger models adapt to tasks
from prompts alone [12]. Subsequent foundation models such
as PaLM [3] and LLaMA [4] further explored the trade-
off between parameter count, training data, and downstream
performance; in particular, LLaMA showed that moderately
sized models trained well can rival much larger ones.

Recent work has focused on reasoning-specific behaviours.
Chain-of-thought prompting elicits step-by-step rationales that
substantially improve accuracy on arithmetic and symbolic
tasks [5], and even zero-shot “let’s think step by step” prompts
can boost reasoning performance without additional labels
[6]. Benchmarks such as GSM8K for grade-school math
[7], MMLU for broad knowledge and reasoning [10], and
BIG-bench for diverse, often challenging tasks [9] all show
substantial gains with scale. Combined with chain-of-thought
style evaluations, they also reveal that models can overfit to
surface patterns or produce fluent but logically inconsistent
rationales [5], [6], [9]. Work on “show your work” supervision
suggests that training directly on intermediate solutions can
improve algorithmic generalization [13], motivating the kind
of structured, multi-step tasks we study here.

B. Small Models, Supervised Fine-Tuning, and Parameter-
Efficient Adaptation

Despite the advantages of scale, smaller models remain
attractive due to lower inference cost and easier deploy-
ment. Knowledge distillation compresses large teacher models
into smaller students [18], and DistilBERT showed that a
compact Transformer can retain most of BERT’s language
understanding performance while reducing parameter count
and latency [19]. More recently, parameter-efficient fine-tuning
(PEFT) methods such as LoRA [20] and QLoRA [21] adapt
only a small number of additional low-rank parameters on
top of a frozen (often quantized) base model, enabling task
specialization under tight memory and compute budgets.



Instruction tuning and reinforcement learning from human
feedback (RLHF) have been used to align large models
with user preferences and improve helpfulness and truthful-
ness. InstructGPT [22] showed that supervised fine-tuning
on human-written instruction-response pairs substantially im-
proves perceived helpfulness and adherence to instructions,
while subsequent RLHF further adjusts model behavior to
match human preference judgments, including for summariza-
tion [23]. However, these pipelines are typically instantiated
for models at the billion-parameter scale and above, and the
most visible deployments focus on tens to hundreds of billions
of parameters; comparatively less is known about how far
simple supervised fine-tuning alone can push much smaller
models on explicitly algorithmic, multi-step tasks.

Our work sits at the intersection of these lines: we
use LoRA-style supervised fine-tuning on a 1.5B-parameter
instruction-tuned model, and ask whether this is sufficient to
close the reasoning gap to a 72B-parameter reference model
on structured games that explicitly probe short- and medium-
horizon reasoning.

C. Benchmarks and Algorithmic Reasoning Tasks

Standard NLP benchmarks such as GLUE [24] and Su-
perGLUE [25] have been crucial for evaluating general lan-
guage understanding. GLUE aggregates nine sentence-level
classification and similarity tasks spanning multiple domains
and data regimes, and was quickly saturated by pre-trained
Transformers. SuperGLUE raises the difficulty with harder
NLI, QA, and coreference-style tasks and more diverse for-
mats, but current large models are now at or above non-expert
human performance on its aggregate score. In parallel, newer
benchmarks emphasize reasoning and compositional gener-
alization. MMLU [10] covers 57 multi-domain exam-style
subjects, while GSM8K [7] targets linguistically diverse grade-
school math word problems requiring multi-step arithmetic.
Other math-focused suites generate large, structured training
and extrapolation splits for arithmetic, algebra, calculus, and
probability [8]. Beyond single-problem settings, BIG-Bench
[9] assembles over 200 tasks, many explicitly designed to be
challenging for contemporary LMs.

A complementary line of work isolates long-context and
algorithmic behaviour. Long Range Arena (LRA) [26] probes
sequence models on synthetic and real tasks with context
lengths up to 16K tokens, including hierarchical ListOps,
byte-level text classification and retrieval, pixel-level image
classification, and long-range spatial reasoning in Pathfinder.
Several studies focus on algorithmic learning more directly,
showing that Transformers and related architectures can ap-
proximate algorithms such as addition, polynomial evaluation,
or program execution, but often fail to extrapolate reliably
to longer sequences or harder instances [8], [13]. At the
same time, large-scale studies report “emergent” abilities that
appear only beyond certain scale thresholds on reasoning-
heavy benchmarks, including MMLU, BIG-Bench, and math
word problems [11]. This leaves an open question: to what

extent can targeted supervision on structured, algorithmic tasks
substitute for sheer scale?

By constructing four algorithmic “games” with exact
solvers, controllable instance difficulty, and rich structural
metrics, our study complements these benchmarks with a con-
trolled setting where optimal behaviour is known. We use this
setting to directly test whether a comparatively small model,
trained only with supervised fine-tuning, can approximate or
match the reasoning performance of a much larger pretrained
model as context length and structural complexity increase.

III. METHODOLOGY

This section describes the algorithmic games, synthetic
dataset generation, prompting scheme, model configurations,
supervised fine-tuning setup, and evaluation protocol used to
study whether a small instruction-tuned language model can
match the multi-step reasoning behaviour of a much larger
model on structured algorithmic tasks.

A. Algorithmic Games and Dataset Generation

We consider four games with discrete state and action
spaces and well-defined optimal policies. All tasks are cast
into a unified next–K-step prediction problem: given a textual
description of the current state st, the model must predict
the next K optimal actions (at, . . . , at+K−1). Each example
consists of a text prompt x and a multi-line target y in which
each line is a single token (integer or move symbol).

Fibonacci sequence prediction. For the Fibonacci game
we sample a total sequence length T uniformly from [10, 50]
and generate the first T elements of the Fibonacci sequence
(0, 1, 1, 2, . . . ). We then sample a prediction horizon K ∈
[1, 8] subject to K ≤ T − 2, and a start index s with 1 ≤ s ≤
T−K−1. The model is shown a contiguous slice (x0, . . . , xs)
and must predict (xs+1, . . . , xs+K). To keep prompts compact,
only the last 12 elements of this prefix are displayed in the
text. The state is rendered as a single line of space-separated
integers, while the target contains exactly K lines, each with a
single integer and no surrounding text. We enforce uniqueness
over triples (T, s,K).

Towers of Hanoi. For Towers of Hanoi we sample the num-
ber of disks ndisks ∈ [3, 8] and assign source, destination, and
auxiliary pegs by sampling two distinct pegs from {A,B,C}
and using the remaining peg as auxiliary. The optimal so-
lution for transferring all disks from source to destination is
generated recursively and replayed to obtain both the move list
and the corresponding sequence of peg configurations. Given
a solution of length L, we sample a horizon K ∈ [1, 8] and a
starting step s such that 0 ≤ s ≤ L −K. The observed state
is the configuration after s optimal moves, rendered as

Peg A: 3 2 1
Peg B: empty
Peg C: ...

with disk IDs printed from bottom to top. The target
consists of exactly K lines of the form X->Y (e.g.,
A->C); syntactically valid moves must match the regular



expression ˆ[A-C]->[A-C]$. We ensure uniqueness over
(ndisks, src, dst, aux, s,K).

Sliding puzzle (8-puzzle). The sliding puzzle uses a 3× 3
board with tiles (1, . . . , 8) and a blank tile 0. The solved
state is (1, 2, . . . , 8, 0). To construct scrambled states we start
from the solved board and apply a random sequence of legal
moves, of length sampled from [10, 30], forbidding immediate
backtracking to avoid trivial oscillations. By construction, all
scrambled states are solvable. Instead of running a separate
search per instance, we precompute a reverse breadth-first
search (BFS) tree rooted at the solved state that maps each
reachable configuration to its parent and the move taken. Given
a scrambled state, we recover a shortest solution path by
following parent pointers back to the goal and inverting moves.
For each example we sample a horizon K ∈ [1, 6] and a
starting step s along this optimal path such that 0 ≤ s ≤ L−K.
The state after s moves is rendered as

1 2 3
4 5 6
7 8 0

where 0 denotes the blank, and the target consists of K
lines each containing one of UP, DOWN, LEFT, or RIGHT.
Uniqueness is enforced over (state,K).
N -Queens. For N -Queens we sample a board size N ∈

[4, 10] and use OR-Tools CP-SAT to enumerate up to a fixed
number of distinct full solutions per N . Each solution is
represented as a vector

queenColumnPositions[c] = r, c ∈ {0, . . . , N − 1},

meaning there is a queen in column c and row r. A layout is
valid if no two queens share a row or diagonal. We interpret
each solution as a sequence of column-wise decisions. For
each example we sample a horizon K ∈ [1, 4] and a starting
column s such that 0 ≤ s ≤ N −K. The prompt reveals the
first s placements in a compact format

rows: 0 2 4

and the model must predict the next K row indices (0-based),
one per line. Uniqueness is enforced based on (N, prefix,K),
where prefix is the tuple of observed row indices.

Splits and stratification. For each game we generate 6000
unique candidate examples using a fixed random seed (42).
From these pools we construct four disjoint splits per task: a
held-out test set of 300 examples and three supervised training
sets of sizes 500, 1500, and 3000. To avoid introducing
difficulty shifts between splits, we perform stratified sampling
over task-specific difficulty buckets: (T,K) for Fibonacci,
(ndisks,K) for Hanoi, (S,K) for sliding puzzle (where S is
the scramble length), and (N,K) for N -Queens. Within each
bucket we shuffle examples and allocate them greedily to the
four splits in proportion to remaining capacity. This yields
nearly identical bucket histograms for all splits while leaving
a small residual pool of unused examples.

B. Prompting and Supervision Signal

All datasets are rendered in a unified chat-style format com-
patible with instruction-tuned models. Each example consists
of:

• A user turn that (i) briefly describes the game, (ii)
presents the current state in one of the text formats
above, and (iii) includes a STRICT OUTPUT FORMAT
(MANDATORY) block. This block specifies the exact
number of required output lines K, the allowed symbols
(integers or move tokens), and explicitly forbids explana-
tions, English words, additional punctuation, blank lines,
and numbering.

• An assistant turn that contains only the ground-truth
target lines during training.

We use Qwen-style markers <im start>user,
<im start>assistant and <im end> to delimit turns.
The generators also support in-context demonstrations, i.e.,
concatenating additional solved examples as few-shot chat
turns before the final query. However, for all experiments
reported here we set num_shots= 0 and evaluate models
in a strictly zero-shot setting to keep the comparison between
model scales and training regimes focused.

For local models we insert a special delimiter token <SOL>
between prompt and target so that the input sequence is

input = prompt ∥<SOL> ∥ target ∥<eos>,

and extend the tokenizer with this additional special token.
During fine-tuning we mask all prompt and <SOL> tokens
with label −100, so the loss is applied only to the target
segment (plus end-of-sequence). This enforces conditioning
on the full prompt while preventing the model from being
penalized for reproducing the instruction text.

C. Models and Training Regimes

We compare a small instruction-tuned model with and
without supervised fine-tuning to a much larger API-served
model.

Small local model (1.5B). Our primary small model is
Qwen2.5-1.5B-Instruct. We use a common BaseModel
abstraction built on HuggingFace Transformers and PEFT.
For evaluation in the zero-shot baseline setting, we load the
pretrained model and tokenizer, add the <SOL> token, and run
greedy decoding without updating any weights.

For supervised fine-tuning we apply low-rank adapta-
tion (LoRA) to the attention projections. Specifically, we
use rank r = 16, scaling factor α = 2r, dropout
0.05, and target the q_proj and v_proj modules
with task_type=CAUSAL_LM. The model is loaded in
bfloat16 with automatic device placement, and the em-
bedding matrix is resized after adding <SOL>. Optimisation
uses AdamW with learning rate 2 × 10−5, batch size 4,
gradient accumulation steps 4, weight decay 0.01, warmup
ratio 0.1, and 10 epochs. Training is run with a simple
80/20 train/validation split obtained from a fold generator
(n_folds=1). Although the codebase includes infrastructure



for Optuna-based hyperparameter search as well as multiple
folds, these were not used in our experiments due to limited
compute; we instead use the fixed hyperparameters above and
a single fold for all fine-tuning runs.

Large reference model (72B). As a strong reference we
use Qwen2.5-72B-Instruct accessed via the OpenRouter Chat
Completions API. We wrap this in an ApiModel class
that sends the full prompt text as a single user message at
temperature 0.0 with a maximum of 64 new tokens, matching
the greedy, deterministic decoding used for the local model.
No fine-tuning is performed on this model; it is evaluated zero-
shot on exactly the same test prompts as the small model.

D. Evaluation Protocol

Evaluation is unified across tasks and models. For each
example we normalise the target by stripping whitespace,
empty lines, chat control tags, and code-fence markers. The
number of expected answer lines K (the prediction horizon)
is the number of lines in this normalised target.

For the small model we append <SOL> to the chat-style
prompt and use greedy decoding (do_sample=False,
temperature=0.0) with max_new_tokens = K + 15.
For the large API model we send the textual prompt (without
chat markers) and read the returned assistant message.

Generations from both models are post-processed identi-
cally: we truncate at our markers, strip outer whitespace, split
on newlines, drop empty and control lines, and keep the first
K lines. If fewer than K lines remain, the prediction is invalid.
Otherwise we normalise these K lines as above and compute
exact match, the fraction of examples whose entire K-step
prediction equals the gold sequence.

From the normalised sequences we compute generic metrics
shared across tasks. Exact match is the fraction of fully
correct K-step sequences. Relative accuracy is the fraction of
positions where the predicted token matches the gold token,
showing partial correctness. Syntax accuracy is the fraction of
output lines that satisfy the task grammar (legal move tokens
or in-range row indices), measuring basic rule-following. Edit
similarity is the normalised Levenshtein similarity between
predicted and gold sequences, capturing near-miss behaviour.
First error position is the 1-based index of the first deviation
from the optimal sequence (or K+1 if none), so larger values
mean longer correct prefixes. For Fibonacci we also report
mean absolute error (MAE) over integer values to capture
numerical accuracy even when the discrete sequence is not
exactly correct.

We additionally use light-weight structural metrics tailored
to each game. For Fibonacci, recurrence violation rate is the
fraction of positions where xt ̸= xt−1+xt−2, and recurrence-
stable prefix rate is the fraction of prefix lengths whose entire
prefix satisfies the recurrence; together they probe whether the
model has internalised the underlying recursion.

For Towers of Hanoi, invalid-move rate is the share of
moves that take from an empty peg or place a larger disk on a
smaller one; local optimality deviation is the average distance
between each legal move and the shortest-path optimal move;

stability error flags peg configurations with disks out of
size order; peg-load divergence is the average ℓ1 difference
between predicted and optimal disk counts per peg; future-
legal prefix rate is the fraction of prefixes that are fully
legal and extendable to some complete solution; and first
critical divergence is the first step at which the predicted
tower state becomes incompatible with the optimal trajectory.
These metrics distinguish surface syntax errors from deeper
violations of legal and near-optimal tower dynamics.

For the sliding puzzle, invalid-move rate is the fraction
of moves that would move the blank off the board, board
divergence is the average tile-wise Hamming distance between
predicted and optimal boards when the sequences are simu-
lated, and future-legal prefix rate is the fraction of prefixes that
remain fully legal when replayed from the start state; together
they measure how closely the model follows the puzzle’s
transition rules.

For N -Queens, conflict pair rate is the average number of
attacking queen pairs when combining the prediction with the
observed prefix, and conflict-free prefix rate is the fraction
of prefixes whose partial boards contain no conflicts, directly
quantifying global consistency with the N -Queens constraints.

IV. RESULTS AND ANALYSIS

We evaluate five configurations on each game: the small
local model Qwen2.5-1.5B-Instruct in zero-shot form (“1.5B-
baseline”), the same model supervised-fine-tuned on 500,
1500, or 3000 training examples (“1.5B-500/1500/3000”), and
the large reference model Qwen2.5-72B-Instruct evaluated
zero-shot via the API (“72B”). All results are reported on the
same 300-example test sets.

Across tasks we track generic sequence metrics: exact match
(fraction of fully correct K-step sequences), relative accuracy
(fraction of positions in the K-step horizon that match the
gold sequence), syntax accuracy (fraction of output lines that
obey the game’s output grammar), edit similarity (normalized
Levenshtein similarity between predicted and gold sequences),
and first error position (1-based index of the first deviation
from the optimal sequence; larger is better). For Fibonacci we
additionally report mean absolute error (MAE) over integer
values. Each game also has structural metrics tailored to
its constraints (recurrence consistency for Fibonacci, move
legality and tower configuration for Hanoi, solvable-move
structure for the sliding puzzle, and queen-conflict structure
for N -Queens), as defined in Sec. III.

A. Fibonacci Sequence Prediction

Table I summarizes the Fibonacci metrics. Supervised fine-
tuning dramatically improves the 1.5B model over its zero-
shot baseline across all sequence metrics, but the 72B model
remains substantially stronger, especially on long-horizon con-
sistency.

Relative to the 1.5B baseline, exact match increases from
1.7% to 24.3% at 3000 examples (roughly a 14× improve-
ment), and position-wise relative accuracy rises from 0.04
to 0.58. Edit similarity and first-error position show similar



TABLE I
FIBONACCI RESULTS. MAE IS SCALED BY 107 ; HIGHER IS BETTER FOR

ALL OTHER METRICS EXCEPT RECURRENCE VIOLATION RATE. BOLD
INDICATES THE BEST VALUE IN EACH COLUMN.

Model Exact Rel. Acc. Syntax Edit First Err. MAE Rec. Viol. Rec. Stable
1.5B-baseline 0.017 0.035 0.172 0.095 1.16 2.82 0.123 0.820
1.5B-500 0.213 0.493 0.687 0.567 2.99 2.13 0.247 0.705
1.5B-1500 0.233 0.554 0.686 0.598 3.26 2.11 0.169 0.796
1.5B-3000 0.243 0.582 0.688 0.606 3.41 2.13 0.164 0.825
72B 0.980 0.986 0.990 0.987 5.62 0.51 0.002 0.996

gains, indicating that the fine-tuned 1.5B model learns a
useful approximation to the Fibonacci recurrence and can often
continue the sequence correctly for several steps. MAE drops
by about 25%, but remains one order of magnitude larger than
the 72B model’s error.

The structural metrics reveal that the large model almost
perfectly obeys the Fibonacci recurrence (violation rate 0.002
and recurrence-stable prefixes > 0.99). The tuned 1.5B model
recovers and slightly exceeds the baseline level of recurrence
prefix stability by 3000 examples (0.825), but its recurrence
violation rate ultimately settles slightly worse than the base-
line. This suggests that fine-tuning teaches the small model to
produce more numerically plausible short prefixes, but it still
struggles to globally enforce the exact recurrence under long
horizons.

B. Towers of Hanoi

Hanoi is substantially harder for both models: optimal se-
quences are long, highly structured, and sensitive to mistakes.
We therefore focus more on legality and state-level divergence
metrics alongside the generic sequence metrics (Table II).

TABLE II
TOWERS OF HANOI METRICS. LOWER IS BETTER FOR INVALID MOVE
RATE, LOCAL DEVIATION, STABILITY ERROR, PEG DIVERGENCE, AND

CRITICAL DIVERGENCE; HIGHER IS BETTER OTHERWISE. BOLD
INDICATES THE BEST VALUE IN EACH COLUMN.

Model Exact Rel. Acc. Syntax Edit First Err. Inv. Move Loc. Dev. Stability Peg Div. Future Legal Crit. Div.
1.5B-baseline 0.023 0.167 1.000 0.680 1.25 0.428 0.833 0.092 0.418 0.281 1.25
1.5B-500 0.033 0.116 1.000 0.488 1.30 0.458 0.884 0.000 0.430 0.387 1.30
1.5B-1500 0.027 0.133 1.000 0.504 1.37 0.384 0.867 0.000 0.411 0.451 1.37
1.5B-3000 0.037 0.153 1.000 0.511 1.42 0.338 0.847 0.000 0.407 0.512 1.42
72B 0.057 0.226 0.997 0.744 1.58 0.340 0.774 0.006 0.374 0.386 1.58

Exact match remains low for all systems (≤ 5.7%), and
even the 72B model diverges from the optimal move sequence
after roughly one or two steps on average. Fine-tuning the 1.5B
model yields only modest changes in sequence-level accuracy:
relative accuracy fluctuates but does not approach the 72B
performance, and edit similarity remains substantially lower.

The structural metrics show clearer learning. Future-legal
prefix rate improves from 0.28 to 0.51 as the training set
grows, indicating that longer prefixes of the predicted sequence
consist entirely of legal moves and remain compatible with
some future solution. Invalid move rate falls from 0.43 to
0.34, essentially matching the large model, and peg-load diver-
gence also decreases slightly with more data. However, local
optimality deviation remains high (≈ 0.85) and consistently
worse than the 72B model, reflecting that the fine-tuned 1.5B
model learns to generate plausible, legal move sequences but
still struggles to track the globally optimal recursive pattern
of Hanoi.

C. Sliding Puzzle (8-Puzzle)

For the sliding puzzle, the small fine-tuned model not only
learns substantially from data but surpasses the large zero-shot
model on several key metrics (Table III).

TABLE III
SLIDING PUZZLE METRICS. LOWER IS BETTER FOR INVALID MOVE RATE

AND BOARD DIVERGENCE; HIGHER IS BETTER OTHERWISE. BOLD
INDICATES THE BEST VALUE IN EACH COLUMN.

Model Exact Rel. Acc. Syntax Edit First Err. Inv. Move Board Div. Future Legal
1.5B-baseline 0.010 0.042 0.207 0.020 1.07 0.063 0.433 0.922
1.5B-500 0.090 0.279 1.000 0.369 1.46 0.166 0.462 0.668
1.5B-1500 0.133 0.310 0.990 0.396 1.59 0.046 0.462 0.904
1.5B-3000 0.160 0.336 1.000 0.419 1.67 0.009 0.461 0.990
72B 0.117 0.310 0.997 0.338 1.51 0.116 0.464 0.750

Exact match rises from 1% to 16% for 1.5B-3000, ex-
ceeding the 72B model’s 11.7%. Relative accuracy and edit
similarity show similar patterns: the fine-tuned 1.5B model
slightly outperforms 72B on position-wise correctness. Syntax
accuracy quickly saturates near 1.0, showing that both models
have little difficulty respecting the move vocabulary when
trained or instructed appropriately.

The structural metrics highlight that fine-tuning makes the
small model more faithfully respect the transition dynamics
of the puzzle. Invalid move rate drops to 0.009 with 3000
examples, far below both the baseline and the 72B model
(0.116). Future-legal prefix rate reaches 0.99, meaning almost
every progressive prefix of the predicted sequence is fully
legal when replayed from the start state, compared to 0.75 for
the large model. Board divergence remains similar across all
systems, indicating that small improvements in move accuracy
translate to only modest changes in final board configurations
over the short horizons considered. Overall, on this task the
fine-tuned 1.5B model clearly matches and in several respects
exceeds the much larger zero-shot model.

D. N -Queens

The N -Queens task evaluates whether models can construct
conflict-free board completions under variable board sizes and
partial prefixes. Table IV shows that supervised fine-tuning
yields monotonic gains and that with enough data the small
model slightly outperforms the 72B model.

TABLE IV
N -QUEENS METRICS. LOWER IS BETTER FOR CONFLICT PAIR RATE;

HIGHER IS BETTER OTHERWISE. BOLD INDICATES THE BEST VALUE IN
EACH COLUMN.

Model Exact Rel. Acc. Syntax Edit First Err. Conflict Rate Conflict-Free
1.5B-baseline 0.033 0.131 0.781 0.370 1.15 0.140 0.348
1.5B-500 0.123 0.267 1.000 0.535 1.43 0.086 0.331
1.5B-1500 0.130 0.283 1.000 0.544 1.48 0.077 0.362
1.5B-3000 0.167 0.319 1.000 0.567 1.60 0.069 0.427
72B 0.153 0.308 0.983 0.556 1.54 0.078 0.369

Exact match increases five-fold from 3.3% to 16.7% as we
scale from 0 to 3000 training examples. Relative accuracy and
edit similarity exhibit similar gains, and first-error position
moves from near-immediate failure (≈ 1.15) to surviving more
than one and a half positions on average. The constraint-
oriented metrics show that fine-tuning meaningfully improves
the internal consistency of predicted partial boards: conflict



pair rate nearly halves from 0.14 to 0.069, while conflict-free
prefix rate rises from 0.35 to 0.43, indicating that as more
rows are predicted, the partial assignment remains conflict-
free significantly more often. Compared to the 72B model,
the 1.5B-3000 configuration attains slightly higher exact match
and relative accuracy, lower conflict rate, and higher conflict-
free prefix rate. On this structured combinatorial task, the small
fine-tuned model therefore slightly surpasses the large zero-
shot model in both syntactic and structural correctness.

E. Cross-Task Discussion

Taken together, these results answer both of our central
questions. First, can a small language model learn nontrivial
multi-step reasoning from supervised signals alone? Across all
four games the 1.5B model shows clear learning: exact match,
relative accuracy, and edit similarity consistently improve with
more data; syntax and legality metrics move toward perfect
rule-following; and structural metrics such as recurrence-
stable prefixes, future-legal prefixes, and conflict-free prefixes
all trend in the desired direction. Even on Hanoi, where
global optimality remains challenging, the fine-tuned model
produces longer stretches of legal moves that keep the tower
configuration closer to a valid solution.

Second, can such a small model match or exceed a much
larger model on multi-step tasks under increasing context
lengths? Our results show a nuanced picture. On Fibonacci, the
72B model remains clearly superior: it achieves near-perfect
exact match and recurrence enforcement even as the prediction
horizon grows, while the 1.5B model only partially internalizes
the recurrence. On Hanoi, both models struggle, but the 72B
system retains an advantage in local optimality and overall
move quality. In contrast, on the sliding puzzle and N -Queens
tasks, the fine-tuned 1.5B model with 3000 examples matches
or slightly surpasses the 72B model in exact match, position-
wise accuracy, and several structural consistency metrics. In
particular, it achieves near-perfect move legality in the sliding
puzzle and lower queen-conflict rates in N -Queens.

Overall, these results indicate that a small instruction-tuned
model can indeed be trained via supervised fine-tuning to
reach, and in some cases exceed, the reasoning performance of
a much larger model on discrete, algorithmic multi-step tasks,
especially when the main difficulty lies in respecting local
constraints and short-to-medium-range structure. However, for
tasks that require maintaining a precise numeric recurrence
over long horizons, or tracking deeply recursive optimal poli-
cies such as in Towers of Hanoi, substantial performance gaps
remain even after fine-tuning.

V. CONCLUSION

In this work we investigated whether a small instruction-
tuned language model can be trained via supervised fine-tuning
to match or exceed the multi-step reasoning performance of a
much larger model on structured algorithmic games. Using
four synthetic tasks with well-defined optimal policies, we
compared a 1.5B-parameter Qwen2.5 model in zero-shot and
fine-tuned configurations against a 72B-parameter Qwen2.5

model evaluated zero-shot via an API. The results show that
the small model does learn non-trivial reasoning behaviour
from supervised signals alone: across all games, fine-tuning
substantially improves exact-match accuracy, position-wise
correctness, and sequence-level similarity metrics relative to
the zero-shot 1.5B baseline. The structural metrics further
indicate that the model internalizes task-specific constraints
rather than simply memorizing surface patterns, as evidenced
by improved recurrence stability in Fibonacci, higher rates of
legal future prefixes in Hanoi and the sliding puzzle, and lower
conflict rates in N -Queens.

With respect to our main question, the answer is nuanced.
For tasks that primarily require enforcing local constraints and
reasoning over short-to-medium horizons, such as the sliding
puzzle and N -Queens, a fine-tuned 1.5B model trained on a
few thousand examples can match or slightly surpass a much
larger 72B model operating in a purely zero-shot regime. In
these settings, supervised fine-tuning effectively closes most
of the performance gap associated with scale, and the small
model becomes highly reliable in terms of syntax, legality, and
structural consistency. In contrast, on Fibonacci and Towers of
Hanoi, where strong performance demands precise recurrence
tracking or long-range recursive structure, the large model
maintains a clear advantage even after fine-tuning: the 1.5B
model learns to extend sequences correctly for a few steps and
to generate legal move sequences more often, but it still fails to
match the large model’s near-perfect recurrence enforcement
or its superior local optimality in Hanoi. Overall, the results
demonstrate that small models can indeed learn meaningful
multi-step reasoning skills and can rival much larger models on
some structured tasks, but that scale still matters for problems
that stress deep recursion and long-horizon consistency.

VI. FUTURE WORK

Several extensions could deepen these findings and reduce
the remaining performance gaps. First, our generators natively
support one-shot and few-shot prompting, but all reported
experiments enforce a strictly zero-shot evaluation regime. A
natural next step is to systematically evaluate both the small
and large models under one-shot and few-shot prompting on
the same test sets, and to study how in-context examples inter-
act with supervised fine-tuning and context length. Second, the
training pipeline already includes infrastructure for Optuna-
based hyperparameter search and multi-fold cross-validation,
which we disabled for computational reasons. Running a
targeted hyperparameter sweep over learning rates, batch sizes,
LoRA ranks, and warmup schedules is likely to yield stronger
1.5B baselines and could clarify how much of the current gap
is due to suboptimal optimisation rather than representational
limits. Finally, scaling the difficulty of the games themselves,
for example by increasing Fibonacci horizons, using larger
boards and more disks in N -Queens and Hanoi, or construct-
ing longer optimal paths in the sliding puzzle, would allow
us to probe how far supervised fine-tuning can push small
models under truly long-context settings, and where more
advanced techniques such as curriculum learning, multi-task



joint training, or reinforcement learning from search-based
teachers become necessary.

VII. INDIVIDUAL CONTRIBUTION AND PROFESSIONALISM

All four team members contributed to the core idea, ex-
perimental design, training pipeline, and writing. Xristopher
Aliferis led the Towers of Hanoi task, including instance gener-
ation, state formatting, legality-aware simulation, and analysis
of the Hanoi metrics. Christopher Lam led the Fibonacci
task, implementing the sequence generator, horizon sampling,
Fibonacci-specific structural metrics, and interpreting how
models learn or violate the recurrence. Carmel Kurland was
responsible for the N -Queens pipeline, including OR-Tools
solution generation, partial-board prompts, constraint-based
metrics, and analysis of combinatorial reasoning. Devraj Nag-
pal implemented the sliding puzzle environment, including
BFS-based solution paths, board parsing, sliding-specific met-
rics, and result analysis. The base model abstractions, LoRA
fine-tuning code, OpenRouter wrapper, metric scripts, and the
manuscript were developed collaboratively, with all members
reviewing each other’s sections. Work was coordinated through
regular meetings and version control with clear commit his-
tories, and academic integrity was maintained throughout by
writing our own code (beyond standard libraries), properly
citing prior work, and reporting only genuinely obtained
results.

VIII. CREATIVITY, INNOVATION, AND REPRODUCIBILITY

The project goes beyond a standard benchmark by unifying
four structurally different games into a single next-K-step rea-
soning framework with shared prompting and evaluation. For
each game we designed custom structural metrics grounded
in lightweight simulators or constraint checkers (recurrence
consistency, move legality and tower state, board dynamics,
and queen conflicts), providing a richer view of reasoning
quality than exact match alone. All datasets are generated
deterministically with fixed seeds, train/test splits are saved
as JSONL, and predictions plus summaries are logged in a
consistent directory structure, making the experiments easy
to rerun or extend with new models. The codebase already
supports few-shot prompting and hyperparameter search, even
though they were intentionally disabled in this study for
compute reasons, positioning the work as a reusable and
extensible testbed for future research on multi-step reasoning
in small versus large language models.



REFERENCES

[1] J. Kaplan, S. McCandlish, T. Henighan et al., “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.08361, 2020.

[2] T. B. Brown, B. Mann, N. Ryder et al., “Language models are few-shot
learners,” arXiv preprint arXiv:2005.14165, 2020.

[3] A. Chowdhery, S. Narang, J. Devlin et al., “Palm: Scaling language
modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.

[4] H. Touvron, T. Lavril, G. Izacard et al., “LLaMA: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[5] J. Wei, X. Wang, D. Schuurmans et al., “Chain-of-thought prompt-
ing elicits reasoning in large language models,” arXiv preprint
arXiv:2201.11903, 2022.

[6] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa,
“Large language models are zero-shot reasoners,” arXiv preprint
arXiv:2205.11916, 2022.

[7] K. Cobbe, V. Kosaraju, M. Bavarian et al., “Training verifiers to solve
math word problems,” arXiv preprint arXiv:2110.14168, 2021.

[8] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli, “Analysing
mathematical reasoning abilities of neural models,” arXiv preprint
arXiv:1904.01557, 2019.

[9] A. Srivastava, A. Rastogi, A. Rao et al., “Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models,”
arXiv preprint arXiv:2206.04615, 2022.

[10] D. Hendrycks, C. Burns, S. Basart et al., “Measuring massive multitask
language understanding,” arXiv preprint arXiv:2009.03300, 2021.

[11] J. Wei, Y. Tay, R. Bommasani et al., “Emergent abilities of large
language models,” arXiv preprint arXiv:2206.07682, 2022.

[12] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation
of in-context learning as implicit bayesian inference,” arXiv preprint
arXiv:2111.02080, 2021.

[13] M. Nye, A. J. Andreassen, G. Sharma et al., “Show your work:
Scratchpads for intermediate computation with language models,” arXiv
preprint arXiv:2112.00114, 2021.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Tech-
nical Report, 2019.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS Deep Learning Workshop, 2015.

[19] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of BERT: Smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[20] E. J. Hu, Y. Shen, P. Wallis et al., “LoRA: Low-rank adaptation of large
language models,” arXiv preprint arXiv:2106.09685, 2021.

[21] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer,
“QLoRA: Efficient finetuning of quantized LLMs,” arXiv preprint
arXiv:2305.14314, 2023.

[22] L. Ouyang, J. Wu, X. Jiang et al., “Training language models to follow
instructions with human feedback,” arXiv preprint arXiv:2203.02155,
2022.

[23] N. Stiennon, L. Ouyang, J. Wu et al., “Learning to summarize with
human feedback,” arXiv preprint arXiv:2009.01325, 2020.

[24] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2019.

[25] A. Wang, Y. Pruksachatkun, N. Nangia et al., “Superglue: A stickier
benchmark for general-purpose language understanding systems,” arXiv
preprint arXiv:1905.00537, 2019.

[26] Y. Tay, M. Dehghani, S. Abnar et al., “Long range arena: A benchmark
for efficient transformers,” arXiv preprint arXiv:2011.04006, 2020.


